Máster en Ingeniería Biomédica

Maestría

Online

$ 2.795 IVA inc.

Descripción

  • Tipología

    Maestría

  • Metodología

    Online

  • Horas lectivas

    1500h

  • Duración

    12 Meses

  • Inicio

    Fechas disponibles

  • Campus online

  • Clases virtuales

Este programa dispone de los más recientes avances en el área de la Ingeniería Biomédica, que han experimentado en los últimos años numerosas innovaciones. Este campo, que cuenta cada vez con más aplicaciones sanitarias, es extremadamente complejo y evoluciona rápidamente, por lo que exige una actualización por parte del médico. Esta titulación ofrece dicha actualización, puesto que profundizará en cuestiones como los biomateriales para la ingeniería de tejidos, las células madre, el análisis de las diferentes señales biomédicas o el análisis de datos médicos usando el lenguaje de programación R, entre muchas otras. Todo ello, siguiendo una innovadora metodología de enseñanza online que permite al especialista compaginar su vida profesional con los estudios.

Información importante

Documentación

  • 153maestria-ingenieria-biomediica.pdf

Sedes y fechas disponibles

Ubicación

comienzo

Online

comienzo

Fechas disponiblesInscripciones abiertas

Información relevante sobre el curso

Objetivos generales
Š Examinar los diferentes tejidos y órganos directamente relacionados con la ingeniería tisular
Š Analizar el equilibrio tisular y el papel de la matriz, los factores de crecimiento y las propias células en el microambiente del tejido
Š Desarrollar las bases de la ingeniería tisular
Š Analizar la relevancia de los biomateriales en la actualidad

Objetivos específicos
Módulo 1. Ingeniería tisular
Š Generar conocimiento especializado sobre histología y funcionamiento del ambiente celular
Š Revisar el estado actual de la ingeniería de tejidos y la medicina regenerativa
Š Abordar los principales retos que afronta la ingeniería tisular
Módulo 2. Biomateriales en Ingeniería Biomédica
Š Analizar los biomateriales y su evolución a lo largo de la historia
Š Examinar los biomateriales tradicionales y sus usos
Š Determinar los biomateriales de origen biológico y sus aplicaciones
Š Profundizar en los biomateriales poliméricos de origen sintético
Š Determinar el comportamiento de los biomateriales en el cuerpo humano, con especial énfasis en su degradación

Este Máster Título Propio en Ingeniería Biomédica tiene como objetivo principal ofrecer al médico las últimas innovaciones en esta disciplina, de modo que pueda incorporarlas a su práctica profesional y actualizarse. Esta área es muy compleja y experimenta continuas transformaciones, por lo que requiere, por parte del especialista, una puesta al día y esta titulación se la ofrece. Así, al completarla, el médico estará en posesión de las técnicas más punteras en este campo en auge.

Este Máster Título Propio en Ingeniería Biomédica contiene el programa científico más completo y actualizado del mercado.

Tras la superación de la evaluación, el alumno recibirá por correo postal* con acuse de recibo su correspondiente título de Máster Propio emitido por TECH Universidad Tecnológica.

El título expedido por TECH Universidad Tecnológica expresará la calificación que haya obtenido en el Máster Título Propio, y reunirá los requisitos comúnmente exigidos por las bolsas de trabajo, oposiciones y comités evaluadores de carreras profesionales.

Título: Máster Título Propio en Ingeniería Biomédica
N.º Horas Oficiales: 1.500 h.

Nuestra escuela es la primera en el mundo que combina el estudio de casos clínicos con un sistema de aprendizaje 100% online basado en la reiteración, que combina 8 elementos diferentes que suponen una evolución con respecto al simple estudio y análisis de casos. Esta metodología, a la vanguardia pedagógica mundial, se denomina Relearning.
Nuestra escuela es la primera en habla hispana licenciada para emplear este exitoso método, habiendo conseguido en 2015 mejorar los niveles de satisfacción global (calidad docente, calidad de los materiales, estructura del curso, objetivos…) de los estudiantes que finalizan los cursos con respecto a los indicadores de la mejor universidad online en habla hispana.

Recibida su solicitud, un responsable académico del curso le llamará para explicarle todos los detalles del programa, así como el método de inscripción, facilidades de pago y plazos de matrícula.

En primer lugar, necesitas un ordenador (PC o Macintosh), conexión a internet y una cuenta de correo electrónico. Para poder realizar los cursos integramente ON-LINE dispone de las siguientes opciones: Flash - Instalando Flash Player 10 o posterior (http://www.adobe.com/go/getflash), en alguno de los siguientes navegadores web: - Windows: Internet Explorer 6 y posteriores, Firefox 1.x y posteriores, Google Chrome, Opera 9.5 y posteriores - Mac: Safari 3 y posteriores, Firefox 1.x y posteriores, Google Chrome - Linux: Firefox 1.x y posteriores HTML5 - Instalando alguno de los navegadores web: - Google Chrome 14 o posterior sobre Windows o Mac - Safari 5.1 o posterior sobre Mac - Mobile Safari sobre Apple iOS 5.0 o posterior en iPad/iPhone Apple iOS - Articulate Mobile Player; Apple iOS 5.0 o posterior en iPad.

Preguntas & Respuestas

Añade tu pregunta

Nuestros asesores y otros usuarios podrán responderte

¿Quién quieres que te responda?

Déjanos tus datos para recibir respuesta

Sólo publicaremos tu nombre y pregunta

Opiniones

Materias

  • Ingeniería
  • Señales biomédicas
  • Ejemplos
  • Biomédicas
  • Magnetoencefalografía
  • Electrocardiografía
  • Electroencefalografía
  • Comportamiento
  • Seguridad
  • Producción
  • Reparación
  • Profesional

Profesores

Carlos Ruiz Díez

Carlos Ruiz Díez

Profesor

Temario

Módulo 1. Ingeniería tisular

1.1. Histología

1.1.1. Organización celular en estructuras superiores: tejidos y órganos
1.1.2. Ciclo celular: regeneración de tejidos
1.1.3. Regulación: interacción con la matriz extracelular
1.1.4. Importancia de la histología en la ingeniería de tejidos

1.2. Ingeniería tisular

1.2.1. La ingeniería tisular
1.2.2. Andamios

1.2.2.1. Propiedades
1.2.2.2. El andamio ideal

1.2.3. Biomateriales para la ingeniería de tejidos
1.2.4. Moléculas bioactivas
1.2.5. Células

1.3. Células madre

1.3.1. Las células madre

1.3.1.1. Potencialidad
1.3.1.2. Ensayos para evaluar la potencialidad

1.3.2. Regulación: nicho
1.3.3. Tipos de células madre

1.3.3.1. Embrionarias
1.3.3.2. IPS
1.3.3.3. Células madre adultas

1.4. Nanopartículas

1.4.1. Nanomedicina: nanopartículas
1.4.2. Tipos de nanopartículas
1.4.3. Métodos de obtención
1.4.4. Bionanomateriales en ingeniería de tejidos

1.5. Terapia génica

1.5.1. La terapia génica
1.5.2. Usos: suplementación génica, remplazamiento, reprogramación celular
1.5.3. Vectores para la introducción de material genético

1.5.3.1. Vectores virales

1.6. Aplicaciones en Biomedicina de los productos de ingeniería tisular. Regeneración, injertos y reemplazos

1.6.1. Cell sheet engineering
1.6.2. Regeneración de cartílago: reparación articular
1.6.3. Regeneración corneal
1.6.4. Injerto de piel para grandes quemados
1.6.5. Oncología
1.6.6. Remplazamiento óseo

1.7. Aplicaciones en biomedicina de los productos de ingeniería tisular. Sistema circulatorio, respiratorio y reproductor

1.7.1. Ingeniería tisular cardiaca
1.7.2. Ingeniería tisular hepática
1.7.3. Ingeniería tisular pulmonar
1.7.4. Órganos reproductores e ingeniería tisular

1.8. Control de calidad y bioseguridad

1.8.1. NCF aplicadas a medicamentos de terapias avanzadas
1.8.2. Control de calidad
1.8.3. Proceso aséptico: seguridad viral y microbiológica
1.8.4. Unidad de producción celular: características y diseño

1.9. Legislación y regulación

1.9.1. Legislación actual
1.9.2. Autorización
1.9.3. Regulación de terapias avanzadas

1.10. Perspectiva de futuro

1.10.1. Estado actual de la ingeniería de tejidos
1.10.2. Necesidades clínicas
1.10.3. Principales retos en la actualidad
1.10.4. Enfoque y retos futuros

Módulo 2. Biomateriales en Ingeniería Biomédica

2.1. Biomateriales

2.1.1. Los biomateriales
2.1.2. Tipos de biomateriales y aplicaciones
2.1.3. Selección de biomateriales

2.2. Biomateriales metálicos

2.2.2. Tipos de biomateriales metálicos
2.2.2. Propiedades y retos actuales
2.2.3. Aplicaciones

2.3. Biomateriales cerámicos

2.3.1. Tipos de biomateriales cerámicos
2.3.2. Propiedades y retos actuales
2.3.3. Aplicaciones

2.4. Biomateriales poliméricos naturales

2.4.1. Interacción de las células con su entorno
2.4.2. Tipos de biomateriales de origen biológico
2.4.3. Aplicaciones

2.5. Biomateriales poliméricos sintéticos: comportamiento in vivo

2.5.1. Respuesta biológica a un cuerpo extraño (FBR)
2.5.2. Comportamiento in vivo de los biomateriales
2.5.3. Biodegradación de polímeros. Hidrólisis

2.5.3.1. Mecanismos de biodegradación
2.5.3.2. Degradación por difusión y erosión
2.5.3.3. Tasa de hidrólisis

2.5.4. Aplicaciones específicas

2.6. Biomateriales poliméricos sintéticos: hidrogeles

2.6.1. Los hidrogeles
2.6.2. Clasificación de hidrogeles
2.6.3. Propiedades de los hidrogeles
2.6.4. Síntesis de hidrogeles

2.6.4.1. Reticulación física
2.6.4.2. Reticulación enzimática
2.6.4.3. Reticulación física

2.6.5. Estructura e hinchazón de hidrogeles
2.6.6. Aplicaciones específicas

2.7. Biomateriales avanzados: materiales inteligentes

2.7.1. Materiales con memoria de forma
2.7.2. Hidrogeles inteligentes

2.7.2.1. Hidrogeles termo-responsivos
2.7.2.2. Hidrogeles sensibles al pH
2.7.2.3. Hidrogeles actuados eléctricamente

2.7.3. Materiales electroactivos

2.8. Biomateriales avanzados: nanomateriales

2.8.1. Propiedades
2.8.2. Aplicaciones biomédicas

2.8.2.1. Imágenes biomédicas
2.8.2.2. Revestimientos
2.8.2.3. Ligandos focalizados
2.8.2.4. Conexiones sensibles a estímulos
2.8.2.5. Biomarcadores

2.9. Aplicaciones específicas: neuroingeniería

2.9.1. El sistema nervioso
2.9.2. Nuevos enfoques hacia biomateriales estándar

2.9.2.1. Biomateriales blandos
2.9.2.2. Materiales bioabsorbibles
2.9.2.3. Materiales implantables

2.9.3. Biomateriales emergentes. Interacción tisular

2.10. Aplicaciones específicas: micromáquinas biomédicas

2.10.1. Micronadadores artificiales
2.10.2. Microactuadores contráctiles
2.10.3. Manipulación a pequeña escala
2.10.4. Máquinas biológicas

Módulo 3. Señales biomédicas

3.1. Señales biomédicas

3.1.1. Origen de la señal biomédica
3.1.2. Las señales biomédicas

3.1.2.1. Amplitud
3.1.2.2. Periodo
3.1.2.3. Frecuencia
3.1.2.4. Longitud de onda
3.1.2.5. Fase

3.1.3. Clasificación y ejemplos de señales biomédicas

3.2. Tipos de señales biomédicas. Electrocardiografía, electroencefalografía y magnetoencefalografía

3.2.1. Electrocardiografía (ECG)
3.2.2. Electroencefalografía (EEG)
3.2.3. Magnetoencefalografía (MEG)

3.3. Tipos de señales biomédicas. Electroneurografía y electromiografía

3.3.1. Electroneurografía (ENG)
3.3.2. Electromiografía (EMG)
3.3.3. Potenciales relacionados con eventos (ERPs)
3.3.4. Otros tipos

3.4. Señales y sistemas

3.4.1. Señales y sistemas
3.4.2. Señales continuas y discretas: analógicas vs. digitales
3.4.3. Sistemas en el dominio del tiempo.
3.4.4. Sistemas en el dominio de la frecuencia. Método espectral

3.5. Fundamentos de señales y sistemas

3.5.1. Muestreo: Nyquist
3.5.2. La transformada de Fourier. DFT
3.5.3. Procesos estocásticos

3.5.3.1. Señales deterministas vs. aleatorias
3.5.3.2. Tipos de procesos estocásticos
3.5.3.3. Estacionariedad
3.5.3.4. Ergodicidad
3.5.3.5. Relaciones entre señales

3.5.4. Densidad espectral de potencia

3.6. Procesamiento de la señal biomédica

3.6.1. Procesamiento de la señal
3.6.2. Objetivos y etapas del procesado
3.6.3. Elementos clave de un sistema de procesado digital
3.6.4. Aplicaciones. Tendencias

3.7. Filtrado: aliminación de artefactos

3.7.1. Motivación. Tipos de filtrado
3.7.2. Filtrado en el dominio del tiempo
3.7.3. Filtrado en el dominio de la frecuencia
3.7.4. Aplicaciones y ejemplos

3.8. Análisis tiempo-frecuencia

3.8.1. Motivación
3.8.2. Plano tiempo-frecuencia
3.8.3. Transformada de Fourier de Tiempo Corto (STFT)
3.8.4. Transformada Wavelet
3.8.5. Aplicaciones y ejemplos

3.9. Detección de eventos

3.9.1. Caso de estudio I: ECG
3.9.2. Caso de estudio II: EEG
3.9.3. Evaluación de la detección

3.10. Software para el procesamiento de señales biomédicas

3.10.1. Aplicaciones, entornos y lenguajes de programación
3.10.2. Librerías y herramientas
3.10.3. Aplicación práctica: sistema básico de procesamiento de señal biomédica

Máster en Ingeniería Biomédica

$ 2.795 IVA inc.